E-Mail: redazione@bullet-network.com
- Gli algoritmi di IA possono riprodurre e amplificare i pregiudizi presenti nei dati di addestramento, portando a discriminazioni sistemiche. Ad esempio, l'algoritmo di Amazon penalizzava i curricula contenenti la parola "donne".
- La mancanza di trasparenza degli algoritmi, definita "effetto scatola nera", rende difficile individuare e correggere i pregiudizi, sollevando preoccupazioni sulla responsabilità. Nel 2019 la Commissione Europea ha definito indispensabile la sorveglianza umana sui processi algoritmici.
- La discriminazione algoritmica può essere diretta o indiretta. Un esempio di discriminazione indiretta è l'esclusione di un'infermiera perché non conosce Microsoft Word, una competenza non essenziale per il suo ruolo.
L’ombra dell’ia sulle opportunità di lavoro
L’intelligenza artificiale (ia) sta rapidamente trasformando il panorama del mondo del lavoro, promettendo efficienza e innovazione. Tuttavia, l’adozione sempre più diffusa di algoritmi nei processi di selezione del personale solleva interrogativi inquietanti sulla loro presunta imparzialità. Dietro la facciata di oggettività, si celano potenziali insidie capaci di perpetuare e amplificare le disuguaglianze esistenti. L’utilizzo di sistemi di machine learning (ml) per la scrematura dei curricula e l’individuazione dei candidati ideali, se non attentamente monitorato, rischia di trasformarsi in un’arma a doppio taglio, generando discriminazioni sistemiche basate su genere, razza, età o altre categorie protette.
Il cuore del problema risiede nei dati utilizzati per “addestrare” gli algoritmi. Se questi dati riflettono pregiudizi storici o sociali, l’ia tenderà a riprodurli e amplificarli, perpetuando cicli di discriminazione. Ad esempio, un algoritmo addestrato su dati che mostrano una predominanza maschile in posizioni di leadership potrebbe penalizzare automaticamente le candidate donne, anche se più qualificate. Questo meccanismo insidioso, noto come “distorsione del passato”, compromette l’equità del processo di selezione e nega a molti candidati meritevoli l’opportunità di dimostrare il proprio valore.
L’automazione spinta dei processi decisionali, combinata con la scarsa trasparenza di molti algoritmi, rende difficile individuare e correggere i pregiudizi. Questo “effetto scatola nera” solleva serie preoccupazioni sulla responsabilità e la possibilità di contestare decisioni discriminatorie. La mancanza di controllo umano e la difficoltà di comprendere i criteri utilizzati dagli algoritmi rendono le vittime di discriminazione algoritmica particolarmente vulnerabili.
La crescente dipendenza dall’ia nei processi di reclutamento e selezione del personale richiede una riflessione approfondita sulle implicazioni etiche e sociali. È fondamentale sviluppare standard e normative che garantiscano la trasparenza, l’equità e la responsabilità nell’utilizzo di queste tecnologie. Solo attraverso un approccio consapevole e multidisciplinare è possibile sfruttare appieno il potenziale dell’ia, mitigando al contempo i rischi di discriminazione e proteggendo i diritti dei lavoratori.
Casi concreti di discriminazione algoritmica
Numerose aziende, spesso inconsapevolmente, si affidano a sistemi di ia che incorporano pregiudizi, con conseguenze tangibili per i candidati. Un esempio eclatante è quello di amazon, il cui algoritmo di selezione del personale penalizzava i curricula contenenti la parola “donne”. Questo accadeva perché l’algoritmo era stato addestrato su dati storici che riflettevano la sottorappresentazione femminile in posizioni di leadership all’interno dell’azienda.
Un’altra criticità riguarda l’utilizzo di competenze considerate “accessorie” come criteri di selezione. Ad esempio, un’infermiera potrebbe essere esclusa da una posizione lavorativa perché non conosce microsoft word, una competenza non essenziale per il suo ruolo. Questo tipo di discriminazione indiretta, spesso non intenzionale, può penalizzare ingiustamente candidati con profili atipici ma altamente qualificati.
Anche nel settore delle piattaforme digitali si riscontrano esempi di discriminazione algoritmica. Nel caso di uber, la retribuzione dei lavoratori è calcolata da un algoritmo che tiene conto di fattori come il tasso di disponibilità e la valutazione dei clienti. Tuttavia, questi criteri possono essere influenzati da stereotipi di genere o razziali, portando a retribuzioni ingiustamente inferiori per alcune categorie di lavoratori.
La proliferazione di algoritmi “poco etici” nei processi di selezione del personale solleva interrogativi sulla necessità di una maggiore consapevolezza e di un controllo più rigoroso. Le aziende devono assumersi la responsabilità di garantire che i sistemi di ia utilizzati siano equi, trasparenti e non discriminatori. In caso contrario, rischiano di compromettere la propria reputazione e di incorrere in sanzioni legali.
È fondamentale che i candidati siano consapevoli dei rischi di discriminazione algoritmica e che abbiano la possibilità di contestare decisioni ingiuste. La trasparenza degli algoritmi e la possibilità di ricorrere a un controllo umano sono elementi essenziali per garantire un processo di selezione equo e meritocratico.
Il fenomeno del rischio di discriminazione algoritmica si fonda sulla constatazione che questi strumenti tecnologici possono avere un impatto negativo sui diritti fondamentali se non vengono adeguatamente regolati, poiché rischiano, ogni volta che i dati da cui apprendono sono incompleti o non corretti, di trasporre su modelli automatizzati di larga scala le discriminazioni presenti nelle società.
La discriminazione algoritmica si realizza, come già sottolineato, quando nei sistemi di a.i. alcuni errori sistematici e ripetibili distorcono l’elaborazione dei risultati generando output discriminatori. A questo proposito, occorre evidenziare che gli algoritmi, pur essendo strumenti neutrali che si basano su calcoli oggettivi e razionali, sono comunque progettati da esseri umani e producono risultati sui dati da essi forniti. Per questo motivo è fondamentale la qualità dei dataset utilizzati, che devono essere sufficientemente completi e ampi da non ricreare i pregiudizi e le discriminazioni presenti nella realtà sociale.
Da questi bias si possono generare diversi tipi di discriminazione. Ad esempio, le c.d. distorsioni del passato, che si realizzano quando i dati di input sono distorti per un particolare motivo, come il caso di un algoritmo di screening di curricula che si nutre di dati con un bias di genere. Oppure, bias di correlazione (anche detto proxy discrimination), che si realizza quando avviene la correlazione di diversi insiemi di dati da parte di un algoritmo, come ad esempio associare il genere a una minore produttività a lavoro, non a causa di una relazione causale ma per un pregiudizio sociale (ad esempio, storicamente le donne sono state valutate negativamente rispetto agli uomini a parità di prestazione).
In base alla logica garbace in – garbage out, infatti, dati inesatti o non aggiornati non possono produrre altro che risultati inaffidabili. Nell’ambito del lavoro su piattaforme digitali, per esempio, è il caso del già citato Deliveroo, il cui algoritmo Frank adottava un sistema di profilazione dei riders altamente discriminatorio dal punto di vista dei parametri relativi alle cause di assenza da lavoro.
Strategie per mitigare la discriminazione algoritmica
Per contrastare efficacemente la discriminazione algoritmica, è necessario adottare un approccio olistico che coinvolga diversi attori: aziende, legislatori, esperti di ia e società civile. Un primo passo fondamentale è la raccolta e la cura dei dati di training. I dataset utilizzati per addestrare gli algoritmi devono essere rappresentativi della diversità della società e privi di pregiudizi impliciti.
Le aziende devono investire nella creazione di algoritmi trasparenti e verificabili, in grado di spiegare le motivazioni alla base delle decisioni prese. La trasparenza è essenziale per individuare e correggere eventuali pregiudizi e per garantire la responsabilità in caso di discriminazione.
È inoltre necessario introdurre normative che regolamentino l’utilizzo dell’ia nel mondo del lavoro, stabilendo standard minimi di equità, trasparenza e responsabilità. Il regolamento sull’intelligenza artificiale (ia act) dell’unione europea rappresenta un passo importante in questa direzione, ma è necessario un impegno continuo per adattare le normative all’evoluzione tecnologica.
Un ruolo cruciale è svolto dagli esperti di machine learning, che devono essere consapevoli dei rischi di discriminazione e impegnarsi nella creazione di algoritmi etici e responsabili. La formazione e la sensibilizzazione sono elementi essenziali per garantire che i professionisti dell’ia siano in grado di individuare e mitigare i pregiudizi nei propri sistemi.
Infine, è fondamentale che i candidati siano informati sui propri diritti e che abbiano la possibilità di contestare decisioni discriminatorie. La creazione di meccanismi di reclamo efficaci e accessibili è essenziale per garantire che le vittime di discriminazione algoritmica possano ottenere giustizia.
Citando l’avvocato specializzato in diritto del lavoro e IA dello Studio Legale Duranti e Associati, “il rischio di discriminazione algoritmica si realizza quando nei sistemi di IA alcuni errori sistematici e ripetibili distorcono l’elaborazione dei risultati generando output discriminatori”.
In una comunicazione della Commissione europea del 2019 “creare fiducia nell’intelligenza artificiale antropocentrica”, veniva definito indispensabile l’intervento e la sorveglianza umana sui processi algoritmici come paradigma di riferimento per garantire un clima di fiducia e sicurezza nei confronti dell’IA e prevederne i risultati imprevisti.
La discriminazione può consistere in due comportamenti differenti: può essere diretta o indiretta. Per discriminazione diretta si intende il caso in cui una persona è trattata in un modo meno favorevole rispetto ad un’altra persona in una situazione comparabile, a titolo esemplificativo per ragioni quali sesso, razza, etnia, religione, orientamento sessuale, età e disabilità.
Si definisce discriminazione indiretta invece la situazione in cui un criterio o una pratica apparentemente neutri mettono una persona in una posizione di svantaggio rispetto agli altri. Questa seconda tipologia è molto più sottile poiché può essere messa in atto in modo involontario e, proprio per questo motivo, può essere più difficile da individuare.

Verso un’ia inclusiva e responsabile
Il futuro del mondo del lavoro è strettamente legato all’intelligenza artificiale. Tuttavia, è fondamentale garantire che questa tecnologia sia utilizzata in modo etico e responsabile, promuovendo l’inclusione e la parità di opportunità per tutti. La discriminazione algoritmica rappresenta una minaccia seria per questo obiettivo, ma può essere contrastata attraverso un impegno congiunto da parte di aziende, legislatori, esperti di ia e società civile.
La trasparenza, la responsabilità e la supervisione umana sono elementi essenziali per garantire che l’ia sia uno strumento al servizio dell’uomo, e non un ostacolo alla sua realizzazione professionale. Solo attraverso un approccio consapevole e multidisciplinare è possibile sfruttare appieno il potenziale dell’ia, mitigando al contempo i rischi di discriminazione e proteggendo i diritti dei lavoratori.
Non possiamo permettere che l’ia diventi un nuovo strumento di esclusione e disuguaglianza. Dobbiamo impegnarci a costruire un futuro in cui la tecnologia sia utilizzata per promuovere un mondo del lavoro più equo, inclusivo e meritocratico. Il futuro del lavoro è digitale, ma deve essere anche umano.
Riflessioni sull’etica degli algoritmi: tra bias e responsabilità
L’intelligenza artificiale, nel suo profondo potenziale trasformativo, ci pone di fronte a quesiti etici cruciali. La questione della discriminazione algoritmica, come abbiamo visto, non è un semplice inconveniente tecnico, ma un sintomo di problemi più ampi legati alla progettazione, all’implementazione e alla supervisione dei sistemi di ia.
Per comprendere meglio questo fenomeno, è utile richiamare un concetto fondamentale dell’ia: il bias. In termini semplici, un bias è una distorsione sistematica presente nei dati di addestramento che influenza il comportamento dell’algoritmo, portandolo a prendere decisioni non oggettive o discriminatorie. Questi bias possono derivare da diverse fonti: dati incompleti o non rappresentativi, pregiudizi impliciti dei progettisti, o anche semplicemente dalla difficoltà di tradurre concetti complessi in regole algoritmiche.
Un concetto più avanzato, strettamente legato al tema della discriminazione algoritmica, è quello della “fairness” (equità) nell’ia. Esistono diverse definizioni di fairness, ognuna con i propri vantaggi e svantaggi. Alcune definizioni si concentrano sull’uguaglianza di trattamento tra diversi gruppi (ad esempio, garantire che uomini e donne abbiano le stesse probabilità di essere selezionati per un lavoro), mentre altre si concentrano sull’uguaglianza di risultati (ad esempio, garantire che uomini e donne abbiano lo stesso tasso di successo nel lavoro). La scelta della definizione di fairness più appropriata dipende dal contesto specifico e dai valori che si vogliono promuovere.
La sfida che ci attende è quella di sviluppare sistemi di ia che siano non solo efficienti e performanti, ma anche equi, trasparenti e responsabili. Questo richiede un impegno multidisciplinare che coinvolga esperti di etica, giuristi, ingegneri, sociologi e, soprattutto, la consapevolezza e la partecipazione attiva di tutti i cittadini.
Che tipo di mondo vogliamo costruire con l’intelligenza artificiale? Un mondo in cui la tecnologia amplifica le disuguaglianze esistenti o un mondo in cui promuove la giustizia e l’uguaglianza? La risposta a questa domanda dipende da noi. Dipende dalla nostra capacità di comprendere i rischi e le opportunità dell’ia, di sviluppare standard etici rigorosi e di impegnarci attivamente nella costruzione di un futuro in cui la tecnologia sia al servizio dell’umanità.
Sostituisci `TOREPLACE` con:
“Create an iconographic image inspired by naturalistic and impressionistic art. The image should metaphorically represent the main entities of the article: an algorithm as a complex gear system with visible biases (e.g., skewed shapes, uneven distribution), a diverse group of job candidates depicted as stylized figures in warm, desaturated colors (representing different genders, races, and ages), and scales of justice slightly unbalanced. The style should be reminiscent of Monet’s water lilies with soft, diffused light and a warm, desaturated color palette. No text should be included in the image. The overall composition should be simple, unified, and easily understandable, emphasizing the imbalance and hidden biases in AI-driven job selection.”
- Documento che analizza rischi di discriminazione e opportunità dell'IA nel lavoro.
- Analisi delle discriminazioni algoritmiche, utile per comprendere il contesto legale.
- Analisi sull'impatto dell'IA nella selezione e i rischi di discriminazione.
- Standard ISO/IEC 42001:2023 per sistemi di gestione etica dell'IA.
Articolo interessante, ma mi sembra che si dipinga l’IA come il male assoluto. Non è che forse stiamo un po’ esagerando? Ci sono anche i lati positivi, tipo l’efficienza e la riduzione dei tempi di selezione…
Ma dai, lo sanno tutti che gli algoritmi sono programmati dai soliti uomini bianchi e ricchi per favorire i loro simili! È una cospirazione bella e buona!1!!
Ok, l’articolo solleva delle questioni importanti. Ma non è che stiamo puntando il dito solo contro l’IA quando le discriminazioni nel mondo del lavoro esistevano già prima? Forse dovremmo concentrarci su come migliorare i dati di addestramento piuttosto che demonizzare la tecnologia in sé.
Io sono ingegnere informatico e vi assicuro che creare algoritmi ‘fair’ è un casino! Ci sono un sacco di definizioni diverse di ‘fairness’ e spesso sono in conflitto tra loro. Non è così semplice come dire ‘eliminiamo i bias’. Serve una ricerca seria e un dialogo aperto tra esperti di diverse discipline.
Ma scusate, se l’algoritmo di Amazon penalizzava le donne, non potevano semplicemente rimuovere quella parte di codice? Mi sembra una cosa abbastanza ovvia, no? Forse c’è qualcos’altro che non ci dicono.. e poi basta con questi articoli catastrofici sull’IA che ruba il lavoro, bisogna aggiornarsi e basta!